
Apps vs. Open Web: The Battle of the Decade

Tommi Mikkonen

Department of Software Systems

Tampere University of Technology

Tampere, Finland

tommi.mikkonen@tut.fi

Antero Taivalsaari

Advanced Development & Technology

Nokia Corporation

Tampere, Finland

antero.taivalsaari@nokia.com

Abstract—Today, both desktop and mobile software systems

are usually built to leverage resources available on the World

Wide Web. However, in recent years desktop and mobile

software have evolved in different directions. On desktop

computers, the most popular application for accessing content

and applications on the Web is the web browser. In mobile

devices, in contrast, the majority of web content is consumed

via custom-built native web apps. This divergence will not

continue indefinitely. We anticipate that in the 2010’s we will

witness a major battle between two types of technologies: (1)

native web apps and (2) Open Web applications that run in a

web browser or some other standards-compliant web runtime

environment. This ―Battle of the Decade‖ will determine the

future of the software industry – as well as the future of

software engineering research – for years to come.

Keywords–web applications, web programming, web-based

software development, software engineering, web engineering,

open web

I. INTRODUCTION

Although the World Wide Web has existed less than
twenty years, the Web has already transformed our lives in
countless ways. These days, everyday artifacts and services
such as documents, photos, music, videos and newspapers
are widely available on the Web. Online banking and stock
trading have become commonplace. Various documents that
used to be difficult to access, such as municipal zoning
documents, government budget documents or tax records,
are now readily available on the Web. Entire industries such
as banking, financial services, electronics and book retailing,
photography, and music distribution have undergone
dramatic transformations. Web-based services such as
Facebook and Twitter have altered the meaning of social life.
The Web is even having a profound impact on politics and
democracy, shaping the future of nations all over the planet.

The World Wide Web has also had a considerable impact
on the software industry. These days, both desktop and
mobile software systems are usually built to leverage
resources available on the Web, with the objective that the
same content can be accessed effortlessly from different
types of terminals. However, in recent years desktop and
mobile software systems have evolved in rather different
directions. On desktop computers, the most popular
application for accessing content and applications on the
Web is the web browser. In mobile devices, in contrast, the
majority of web content today is consumed via custom-built
native web applications, or “apps” for short.

In this paper, we anticipate that in the 2010’s we will
witness a major battle between two types of technologies: (1)
native web apps and (2) Open Web applications that run in a
web browser or some other standards-compliant web runtime
environment. The former approach implies the use of binary
software and traditional software engineering practices,
while the latter approach implies that conventional software
engineering methods and practices will be replaced by
technologies created for web development. This “Battle of
the Decade”, as we call it, will determine not only the future
of the software industry, but the future of software
engineering research as well.

This paper builds on a number of earlier papers [4, 5, 6,
7, 11, 12, 13, 14]. Many of the topics in this short paper have
been covered more extensively in those earlier papers.

The rest of this paper is structured as follows. In Section
II we provide a brief discussion on the evolution of the Web
as a software platform, and then focus on the ongoing battle
between native apps and Open Web applications in Section
III. In Section IV we outline the research challenges that
arise from the two divergent paths. In Section V we draw
some final conclusions.

II. EVOLUTION OF THE WEB AS A SOFTWARE PLATFORM

Over the past twenty years, the World Wide Web has
evolved from a document sharing system to a massively
popular, general purpose application and content distribution
environment – in short, the most powerful information
distribution environment in the history of humankind. This
evolution has taken place in a number of evolutionary phases
or eras [14]. Note that here we intentionally focus on the
evolution of the Web as a software platform. When viewed
from other angles – e.g., from the viewpoint of online
banking or music or video distribution – the history of the
Web would look somewhat different.

In the first era – the Web as a document environment –
the programming capabilities of the Web were very limited,
reflecting the origins of the Web as a document sharing and
distribution environment. In the second era – the Web as an
application environment – the software development
capabilities of the Web started emerging, with different
technologies competing with each other vigorously. In the
third era that is unfolding currently – the Web as the
application environment – we believe that the landscape of
the software industry will change dramatically, as the
balance shifts irrevocably from binary end user software to
web-based software. Note that these three eras are by no

means mutually exclusive. Rather, web pages and
applications representing all three eras coexist on the Web
today. A visual summary of the different eras is provided in
Figure 1. We will ignore many of the details in this paper,
since they are not relevant for the main theme of the paper.

III. THE BATTLE OF THE DECADE

The key point about the evolution of the Web presented
in Figure 1 is the current, ongoing battle between native web
apps and HTML5-based Open Web applications.

A. Native Apps

Custom-built native apps have become one of the
dominant ways people use web services. For instance, on
Apple’s highly successful iPhone and iPad devices, as well
as on Google’s Android devices, the users typically access
Facebook, Twitter, and many other popular web services
using custom-built native apps rather than with the web
browser. Such native apps are not really web applications at
all; however, they use the same network protocols to access
the backend services as the web browser does.

There are good reasons for native web apps to exist.
While the underlying needs to communicate and access
information are the same in desktop and mobile
environments, the way people consume content and use
applications with different types of terminals and devices are
fundamentally different. In the mobile space, the time span

of the users' actions is usually significantly shorter than in
the desktop space; the users wish to perform rapid, focused
actions instead of long-lasting sessions; actions must be
simple yet focused, and they must accomplished with ease,
using only a minimal number of keystrokes or finger presses,
often while the user is walking, driving a car or is somehow
otherwise distracted by other activities. The different usage
modalities and smaller screen sizes have a significant impact
on application design; generic web pages geared towards
laptop or desktop computer users are not usually ideal for
mobile use. In addition, performance issues or network
connectivity issues can make web applications nearly
unusable in mobile devices. The conventional web browser
simply was not designed for such use.

By using the native graphics libraries, the look-and-feel
of apps can be customized specifically to the needs of the
application and the device; the applications can also leverage
device-specific features much more comprehensively than a
pure web application could. The downside of such apps is
that they are strictly platform-specific. Apps developed for
the iPhone run only on Apple devices, so several different
implementations – composed with different platform-specific
tools – are needed if the app is to run also on Android,
Blackberry, Symbian, or other commonly used target
platforms [15]. In many cases a separate app is needed for
each of the different versions of the target device. Such
fragmentation is what effectively killed Sun's (now Oracle's)
once highly successful Java ME platform [10].

Another source of fragmentation is that different apps,
developed by different parties, commonly assume different
ways of interaction. For instance, gestures that work in a
certain fashion in one application may imply totally different
functions in other applications. This can be confusing for the
user, and in the end lead to additional requirements on how
applications should be defined, together with associated style
guides and so forth.

Finally, unlike pure web applications, a native app
requires conventional installation. The user must usually
download the application binary from a specific location,
such as Apple's App Store

(http://store.apple.com/). In order

to introduce new features, the user must typically download
and install a totally new version or upgrade the application
explicitly by device-specific means. This is clumsy and
inconvenient for the user, e.g., since the application or the
entire device may be partially unavailable while the
download and upgrade is in progress.

B. Open Web

Following the Open Web principles laid out in the
Mozilla Manifesto [8], web applications should be built on
technologies that are open, accessible and as interoperable as
possible, and should run in a standards compatible web
browser without plugins, extensions or custom runtimes. In
December 2010, Tim Berners-Lee – the inventor and founder
of the World Wide Web – published an article in which he
called the current trend towards custom-built native web
apps “disturbing”, because that trend is dividing information
into separate content silos that are isolated from each other
[2]. Such content is off the Open Web, and usually under the

Figure 1. Evolution of the Web as a Software Platform

(for high-quality image, see http://lively.cs.tut.fi/WebEvolution.png)

http://lively.cs.tut.fi/WebEvolution.png

control of an individual company. Typically, you cannot
bookmark, tweet or e-mail a link to such a page using a
standard browser. Rather, you must explicitly download,
install and use (and later upgrade) a vendor-specific app
from a vendor-specific app store for each device platform in
order to access such content.

Open Web applications have various benefits. For
instance, they require no installation or manual upgrades, and
they can be deployed instantly worldwide. A web application
published in Tampere (Finland), say, is instantly and equally
available in Tallahassee (Florida, USA), Tandragee (Ireland)
or Taree (New South Wales, Australia) without explicit
installation. The Open Web principles will allow application
development and instant worldwide deployment without
middlemen or distributors. Conventional binary applications
are at a major disadvantage when compared to web-based
software that can be deployed instantly across the planet.

So far, a number of obstacles have hindered the
development and deployment of full-fledged, truly
interactive web applications. The obstacles have been
especially apparent in the mobile device space. We have
analyzed the problems in earlier papers [4, 5, 6, 12].
However, new standards such as HTML5 and WebGL will
eliminate many of the limitations in this area.

The forthcoming HTML5 standard [16] complements the
capabilities of the existing HTML standards with numerous
new features. Although HTML5 is a general-purpose web
standard, many of the new features are aimed squarely at
making the Web a better place for desktop-style web
applications. Examples of features that support desktop-style
applications include offline applications that can be run even
when an active network connection is not available
(http://www.w3.org/TR/offlinewebapps/), a simple storage
mechanism that behaves like a simple key-value database,
allowing textual data to be stored locally in the
computer/device, Canvas API that provides a 2D drawing
canvas for procedural, interactive graphics, and built-in
audio and video support.

WebGL (http://www.khronos.org/webgl/) [3] is a cross-
platform web standard for hardware accelerated 3D graphics
API developed by Mozilla (http://www.mozilla.org) and
Khronos Group (http://www.khronos.org/), and a consortium
of additional companies including Apple, Google and Opera.
The main feature that WebGL brings to the Web is the
ability to display 3D graphics natively in the web browser
without any plug-in components. Unlike with earlier
technologies such as Flash, O3D, VRML and X3D, with
WebGL the 3D capabilities are integrated directly in the web
browser, meaning that 3D content can run smoothly and
portably in any standards-compliant browser. The possibility
to display 3D graphics natively in a web browser is one of
the most exciting things happening on the Web recently.

While HTML5 and the related W3C standard activities
play a critical role in turning the Web into a serious
application platform, it is important to note that the feature
set offered by an HTML5-compliant web browser is still
somewhat incomplete for real-world applications. As
depicted in Figure 1, our prediction is that another major
round of standardization will be necessary in mid-to-late

2010s to establish a more complete web application
platform. We refer to such standard work informally as
“HTML5+”, that is, the next major version/successor of the
HTML5 Specification. A critical goal in that work will be to
more comprehensively “virtualize” the underlying operating
system and device capabilities, as well as ensure that the
necessary security mechanisms are in place to access the
platform and device capabilities securely.

IV. IMPACT ON THE SOFTWARE INDUSTRY AND

SOFTWARE ENGINEERING RESEARCH

The document-oriented origins of the Web have led to an
impedance mismatch between web development and
conventional software engineering. In this section we take a
brief look at this impedance mismatch and its implications
for the software industry and software engineering research.

A. Web vs. Conventional Software Development:

The Impedance Mismatch

As we have discussed in earlier papers, a historical
impedance mismatch exists between web development and
software engineering. This impedance mismatch reflects the
fact that the World Wide Web was originally designed to be
a document distribution environment – not a software
platform. The differences are highlighted in Figure 2.

Figure 2. Impedance Mismatch Between Web Development

 and Conventional Software Development

In the remaining parts of the paper, we will consider the two

divergent paths that the evolution of the Web may take as a

result of the Battle of the Decade. The implications for the

software industry and software engineering research are

entirely different depending whether the balance tilts

towards native apps or the Open Web.

B. Scenario 1: Native Apps Will Dominate

Many people seem to take it for granted that especially in
the mobile industry native apps will continue to dominate.
For instance, in a September 2010 Wired magazine article
Chris Anderson and Michael Wolff claimed that the Web is
already dead [1], because for the vast majority of web
services such as e-mail, news, Facebook and Twitter, users
will prefer custom-built native applications (e.g., Flipboard
for iPad) over open, unfettered web browser access.

The success of native apps is not entirely unexpected.
Native apps enjoy considerable success partly because of
commercial reasons (e.g., because it tends to be easier to
monetize closed rather than open platforms) and partly
because of technical reasons (e.g., because it is easier to
define new APIs and optimize overall system behavior in
world in which the platform is owned and controlled by a
single vendor.

Superficially, from the viewpoint of software
engineering, the native apps scenario is business as usual.
Since the development model in this scenario revolves
around the creation of rather conventional binary
applications that are written, installed and run in a well-
known fashion, existing design, integration and testing
practices and methods can be used without major changes.

However, under the surface there are numerous things
that need attention. To begin with, mobile devices are subject
to significantly more variations and fragmentation than
conventional desktop computers. For instance, screen size
differences, different interaction and input mechanisms,
memory and processing power limitations/differences and
intermittent network connections create additional challenges
for developers. In the area of Java ME development – the
once dominant mobile application platform – some game
companies reported that they had to create over a thousand
different variants of their applications for different devices!

These days, the mobile industry seems to be headed to an
equilibrium in which two or three native platforms will
dominate the industry. The companies controlling those
platforms place a lot stricter restrictions on the device
capabilities than the Java ME specifications ever did.
Nevertheless, the application developers will still have to
create a large number of variants of their applications if they
expect their applications to be available on all the major
platforms, devices and countries; even if the developer is
targeting only one major platform such as Apple’s iPhone,
internationalization and localization may still require effort.

In general, the successful creation of commercial native
web apps places a lot of requirements on product family
management. In order to offer an attractive app portfolio that
covers all the different platforms, tools for managing
fragmentation in massive scale are needed. Those tools must
be able to provide cross-platform support that enables the use
of the same code in different platforms, and is capable of
recognizing and handling the micro-level fragmentation
issues (bugs and “features”) between different devices that
use the same platform. The tools must also be able to take
into account the different installation practices for different
target platforms. For instance, for Apple’s iPhone and iPad
devices, application installation can only take place via
Apple’s Web Store.

The topics discussed above are just a tip of the iceberg
for a proper research agenda for Scenario 1.

C. Scenario 2: Open Web Will Dominate

The starting point for Scenario 2 is that the transition
towards web-based software development will continue and
will eventually have a profound impact not only for desktop
software but mobile software development as well.

The victory of Open Web applications is by no means
guaranteed, though. There are still numerous issues that
plague the development of web applications, and for mobile
devices especially. In our earlier papers, we have divided
those problems broadly into the following categories:

(1) software engineering principle violations,
(2) usability and user interaction issues,
(3) networking and security issues,
(4) browser interoperability and compatibility issues,
(5) development style and testing issues,
(6) deployment model issues, and
(7) performance issues.

We will not revisit all the categories in this brief paper.

Rather, we highlight a number of topics that we believe
should be high on the research agenda for Scenario 2.

First, the transition from binary applications to pure web
applications will result in a shift away from static
programming languages such as C, C++ or C# towards
dynamic programming languages such as JavaScript, PHP or
Python [9]. Since mainstream software developers are often
unaware of the fundamental development style differences
between static and dynamic programming languages, there is
a need for education in this area. Developers need to be
educated about the evolutionary, exploratory programming
style associated with dynamic languages, as well as agile
development methods and techniques that are available for
facilitating such development.

Second, the software deployment practices for web
applications are entirely different from conventional binary
software. Web applications are distributed primarily in the
form of source code, not binaries. Any application updates
that are posted on the Web are immediately accessible to
anybody anywhere on the planet. This “instant gratification”
dimension will revolutionize the deployment and distribution
of software applications, and will enable “nano releases”,
i.e., software releases that may occur multiple times per day
or even every few minutes. For instance, recently Netflix
(http://www.netflix.com/) reported that they commonly
publish updates to their web applications up to six times per
day! One of the main challenges in the deployment area is to
define a model that addresses the fundamental changes in the
nature of applications: applications that remain “always on”,
the ever-shortening nano release cycles, and the “perpetual
beta syndrome”, i.e., applications that will stay in continuous
development mode indefinitely [11].

Third, in the testing area there is an increased need for
code coverage testing methods to ensure that all the parts and
execution paths of the applications are tested appropriately.
Since web applications consist of pieces that are loaded
dynamically without any static compilation, type checking or
linking, it is quite possible for significant pieces of the
applications to be missing at runtime. This feature, when
combined with the lack of well-defined interfaces and
general fragility that characterize web-based software [6,
12], leads to many interesting research topics and challenges,
especially when developing mashups and mashware, i.e.,
software that dynamically combines content and components
published in different sites all over the world.

In general, many of the development and deployment
practices that are common in web-based software
development go against the grain or even obliterate many of
the established software engineering principles. So far, there
has not been enough discourse between the software
engineering and web engineering communities; this is
definitely an area for future improvement.

V. CONCLUSIONS

In this paper, we have argued that the ongoing “Battle of
the Decade” between native web apps and HTML5-based
Open Web applications will determine the future of the
software industry and software engineering research. We
started the paper by summarizing the evolution of the Web
as a software platform, followed by an overview of native
web apps vs. Open Web applications that run in a web
browser or some other standards-compliant web runtime
environment. We then presented two alternative scenarios
for the future of the industry based on the possible outcomes
of the battle, as well as highlighted interesting areas for
future research.

REFERENCES

[1] C. Anderson, and M. Wolff, “The Web is Dead: Long Live the
Internet,” Wired, Sep 2010, pp.118-127, 164-166.

[2] T. Berners-Lee, “Long Live the Web: a Call for Continued Open
Standards and Neutrality,” Scientific American, vol 303, nr 4 (Dec),
2010, pp.56-61.

[3] Khronos Group, WebGL Specification, Editor’s Draft, August 8,
2011. URL: http://www.khronos.org/registry/webgl/specs/latest/

[4] T. Mikkonen and A. Taivalsaari, “Web Applications – Spagetti Code
for the 21st Century,” Proc. 6th ACIS International Conference on
Software Engineering Research, Management, and Applications
(SERA'08), IEEE Computer Society Press, 2008, pp. 319-328.

[5] T. Mikkonen and A. Taivalsaari, “Creating a Mobile Web
Application Platform: The Lively Kernel Experiences,” Proc. 24th
Annual ACM Symposium on Applied Computing (SAC’09), ACM
Press, 2009, pp. 177-184.

[6] T. Mikkonen and A. Taivalsaari, “The Mashware Challenge:
Bridging the Gap Between Web Development and Software
Engineering,” Proc. 2010 Workshop on Future of Software
Engineering Research (FoSER’10), ACM Press, 2010, pp. 245-249.

[7] T. Mikkonen and A. Taivalsaari, “Reports of the Web's Death Are
Greatly Exaggerated,” IEEE Computer, vol 44, nr 5, 2011, pp.30-36.

[8] Mozilla, The Mozilla Manifesto, 2011. URL:
http://www.mozilla.org/about/manifesto.en.html

[9] L. D. Paulson, “Developers Shift to Dynamic Programming
languages,” IEEE Computer, vol 40, nr 2 (Feb) 2007, pp. 12-15.

[10] R. Riggs, A. Taivalsaari, J. Van Peursem, J. Huopaniemi, M. Patel,
and A. Uotila, Programming Wireless Devices with the Java™ 2
Platform, Micro Edition (2nd Edition). Addison-Wesley (Java Series),
2003.

[11] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, “Web
Browser as an Application Platform,” Proc. 34th Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA'08), IEEE Computer Society, 2008, pp. 293-302.

[12] A. Taivalsaari and T. Mikkonen, “Mashups and Modularity: Towards
Secure and Reusable Web Applications,” Proc. 1st International
Workshop on Social Software Engineering (SoSEA’08, L’Aquila,
Italy), Department of Software Systems, Tampere University of
Technology, Report 1, 2008, pp 21-28.

[13] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen, “The
Death of Binary Software: End User Software Moves to the Web,”
Proc. 9th Conference on Creating, Connecting and Collaborating
through Computing (C5'11), IEEE Computer Society, 2011, pp. 17-
23.

[14] A. Taivalsaari and T. Mikkonen, “The Web as a Platform: The Saga
Continues”, Proc. 37th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA'11), IEEE Computer
Society, 2011, pp. 170-174.

[15] T. Wasserman, “Engineering Issues in Mobile Application
Development,” Invited talk at MobiCase'10, October 25-27, 2010,
Santa Clara, California, USA.

[16] World Wide Web Consortium, HTML5 Specification, W3C Editor’s
Draft, September 10, 2011. URL: http://www.w3.org/TR/html5/

ABOUT THE AUTHORS

Dr. Tommi Mikkonen is a Professor of Computer Science
at Tampere University of Technology, Finland. Tommi has
pioneered the education of mobile software development in
Finland, and he has arranged numerous courses on software
engineering and mobile computing. Tommi's current
research interests include cloud computing, web
programming, embedded systems, and mashup development.

Dr. Antero Taivalsaari is a Distinguished Engineer at

Nokia. Antero is best known for his seminal role in the
design of the Java™ Platform, Micro Edition (Java ME
platform) – one of the most successful commercial mobile
software platforms in the world, with over three billion
devices deployed so far. Since 2006, Antero’s research has
focused on web application technologies and web-based
software development especially for mobile devices.

Together, Tommi and Antero lead the Lively Web

Programming Research Team at Tampere University of
Technology. For further information and a full list of
research team publications, refer to http://lively.cs.tut.fi/.

